一、考试的总体要求
掌握生物医学工程的基础知识和基本理论,并能合理运用解决实际问题。
二、考试的内容及比例
考试内容分为 A、B、C 三个模块,每个模块满分均为 150 分,考生可任选其中一个模块作答。A 模块为医学成像基础,B 模块为医用传感基础,C 模块为生物医学信号处理基础。
(一)A 模块:医学成像基础
1. 传统 X 射线成像
(1)X 射线物理基础(X 线产生条件及性质;韧致辐射、特征辐射与其对应射线谱; X射线管的技术参数;X 线与物质的相互作用;X 线强度与硬度;X 线的硬化;X 线透射与 衰减)
(2)X 射线透视成像(传统 X 射线成像原理、系统及方式;影响 X 射线成像质量的主 要因素;典型 H-D 曲线形态,其横纵坐标及各参数含义;原发/客观/主观对比度概念,定义公式,相关性推导;传统 X 射线成像缺点)
(3)X 线影像质量评价(像素、分辨率、对比度的概念)
(4)经典 X 射线断层成像(X 线断层成像的基本原理)
(5)数字减影(数字剪影原理及方法;时序减影、能量减影、混和剪影原理;K 吸收 带及 K 吸收边缘法概念)
(6)数字化 X 线摄影(CR 成像原理、 DR 成像原理、二者区别与成像优点)
2. 计算机断层成像
(1)X-CT 定义、成像参数和扫描方式(CT 成像概念;像素与体元概念;衰减系数与 CT值定义;CT 与胶片分辨率差异及原因;窗口技术与窗宽、窗位定义;第一代到第五代 CT 特点)
(2)CT 图像重建原理和方法(投影概念与实质;正弦图概念及公式;CT 图象重建方法分类及典型代表算法比较;直接反投影重建法原理、计算及“灰雾”成因)
(3)CT 图像显示和质量评价方法(CT 图像重建显示的代表性图像处理技术;CT 图 像特点,与 X 射线透视影像的区别;CT 图像质量参数、三种评价参数公式及表征)
(4)CT 装置结构(CT 装置组成;CT 机房要求)
3. 放射性核素成像
(1)放射性同位素及射线检测物理基础(放射性同位素概念、性质、衰变规律、在医学中的应用;粒子探测器各部分组成、定义、分类、特性等;放射线检测前置放大器的作用)
(2)放射性同位素扫描与γ照相机(放射性核素成像概念;放射性同位素扫描原理、结构;γ照相机结构、工作原理)
(3)ECT 成像(ECT 成像原理与分类;SPECT 分类、原理、组成、特点;PET 原理, 符合湮灭测量与飞行时间差作用、探测器类型、成像过程;PET 成像优缺点及主要应用)
4. 超声波成像
(1)超声波物理性质(超声波产生及各种物理参数定义、公式;超声波传播和衰减特性;超声辐射声场特性;超声对生物媒质作用)
(2)医用超声换能器(超声辐射声场指向性、近场与远场特性;超声换能器的压电效应原理;超声换能器结构)
(3)超声诊断仪原理(超声波成像基本原理及优势;超声脉冲反射法/脉冲回波法原理;脉冲工作频率(波长)选取考虑因素,与脉冲重复频率间的区别;超声相控阵扫描原理;超声成像基本类型;超声成像回波信号 e(t)公式及 TGC 原理;A 超、B 超、M 超在显示方面的区别)
(4)超声 Doppler 诊断技术(Doppler 效应原理及公式;超声 Doppler 血流速度测量主要方法;连续波 Doppler 速度测量基本原理;脉冲波 Doppler 速度测量基本原理及特点;超声 Doppler 测量取得血流方向信息;彩色血流映射主要技术思路;运动目标显示技术和相位检测基本知识)
5. 磁共振成像
(1)核磁共振现象(NMR)及其物理基础(原子核磁矩、核磁子、自旋量子数定义; 核磁矩与自旋角动量关系;拉莫尔进动概念与进动频率公式;力学动量矩原理;核磁矩的能级分布与核磁共振现象原理)
(2)核磁共振(NMR)信号产生与检测(宏观磁化原理;引入射频 RF 场原因;自由感应衰减信号 FID 概念;驰豫时间检测方法)
(3)NMR 成像方法(磁共振成像的基本原理;MRI 图象重建方法)
(4)MRI 装置(磁体系统;NMR 波谱仪;图像重建和显示系统)
(5)MRI 应用(临床诊断应用范围;MRI 与其它成像方法比较)
参考材料:
[1] 高上凯著, 医学成像技术, 清华大学出版社, 2001 年 2 月
(二)B 模块:医用传感基础
1. 医用传感器基本概念
(1)医用传感器的定义
(2)医用传感器的分类与组成
(3)人体信息检测的特殊性
(4)医用传感器的发展方向
2. 医用传感器的基本特性
(1)传感器信息模型的建立
(2)传感器的静态特性
(3)传感器的动态特性
3. 常用医用传感器工作原理
(1)电阻应变式传感器
(2)电容式传感器(电容式压力传感器、直流极化型电容传感器、测量电路及分布电容消除方法)
(3)变磁阻式传感器(电杆传感器差动变压器式传感器、变磁阻式传感器的应用)
(4)电动式传感器(附有力学系统的电动式传感器、电磁血流量传感器)
(5)压电式传感器和超声换能器(换能器的结构与超声场、压电式传感器、医用压电超声换能器、医学超声仪器)
(6)热敏式传感器(金属热电偶传感器、热敏电阻温度传感器、PN 结二极管和集成电路温度传感器、热释电传感器)
(7)光敏式传感器(光电倍增管、光电导元件、光生伏特元件、光敏管、各种光敏传感器的性能比较)
(8)电化学与生物传感器测量基础(参比电极、离子选择性电极及其应用、气敏电极和气体扩散电极)
4. 检测生物电及电刺激生物体用电极
(1)极化现象及对生物电检测的影响、不极化电极、电极的阻抗
(2)电极的运动伪差及市电干扰
(3)生物电检测类宏电极的类型
(4)微电极
5. 生物传感器及在医学中的应用
(1)生物传感器原理及典型应用
(2)酶电极原理及典型应用
(3)微生物传感器原理及典型应用
(4)免疫传感器原理及典型应用
(5)细胞器及组织传感器典型应用
(6)多功能及微型生物片传感器典型应用
参考材料:
[1] 《医用传感器与人体信息检测》,作者:王明时,天津科学技术出版社
(三)C 模块:生物医学信号处理基础
1. 生物医学信号概论
(1)生物医学信号处理目的
(2)典型的生物医学信号及其特点
(3)生物医学信号的数学表达(信号概率描述、数字特征以及信号平稳性与遍历性)
(4)生物医学信号通过线性系统
2. 数字信号处理的基本概念
(1)离散时间信号(典型离散信号、离散信号的运算)
(2)离散时间系统(离散时间系统的基本概念、输入输出关系
(3)Z 变换(Z 变换定义、Z 变换收敛域、Z 变换的性质
(4)离散时间系统的转移函数、频率响应、零极点分析
3. 生物医学信号的数字滤波方法
(1)奈奎斯特采样定律(掌握理想采样、频谱混叠、频谱泄露、栅栏效应等概念以及数字频率、归一化频率、频谱分辨率的计算)
(2)线性卷积与循环卷积(图表法、公式法计算卷积)
(3)IIR 数字滤波器(掌握基本概念以及给定特性的滤波器设计)
(4)FIR 数字滤波器(掌握基本概念以及给定特性的滤波器设计)
(5)匹配滤波器(基本原理和构成、神经传导速度测量用信号模型、非白噪声背景下
的匹配滤波器、信号波形未知时的匹配滤波器构造方法)
4. 生物医学信号的现代滤波方法
(1)信号功率谱(定义、非参数估计以及基于 DFT 的功率谱计算)
(2)维纳滤波(原理及公式推倒、滤波器优化、时间离散的维纳滤波器设计)
(3)参数模型(信号的成形滤波器、AR 模型阶次估计、ARMA 模型参数估计)
(4)自适应滤波及其应用(自适应的概念和原理、LMS 自适应滤波器、自适应消噪声、
自适应谱线增强和窄带信号分离、自适应系统辨识)
参考材料:
[1] 《数字信号处理导论》,作者:胡广书,清华大学出版社 (2006-07)
[2] 《生物医学信号处理》,作者:杨福生 高上凯编著,高等教育出版社(1998-05) |
一、考试的总体要求
掌握生物医学工程的基础知识和基本理论,并能合理运用解决实际问题。
二、考试的内容及比例
考试内容分为 A、B、C 三个模块,每个模块满分均为 150 分,考生可任选其中一个模块作答。A 模块为医学成像基础,B 模块为医用传感基础,C 模块为生物医学信号处理基础。
(一)A 模块:医学成像基础
1. 传统 X 射线成像
(1)X 射线物理基础(X 线产生条件及性质;韧致辐射、特征辐射与其对应射线谱; X射线管的技术参数;X 线与物质的相互作用;X 线强度与硬度;X 线的硬化;X 线透射与 衰减)
(2)X 射线透视成像(传统 X 射线成像原理、系统及方式;影响 X 射线成像质量的主 要因素;典型 H-D 曲线形态,其横纵坐标及各参数含义;原发/客观/主观对比度概念,定义公式,相关性推导;传统 X 射线成像缺点)
(3)X 线影像质量评价(像素、分辨率、对比度的概念)
(4)经典 X 射线断层成像(X 线断层成像的基本原理)
(5)数字减影(数字剪影原理及方法;时序减影、能量减影、混和剪影原理;K 吸收 带及 K 吸收边缘法概念)
(6)数字化 X 线摄影(CR 成像原理、 DR 成像原理、二者区别与成像优点)
2. 计算机断层成像
(1)X-CT 定义、成像参数和扫描方式(CT 成像概念;像素与体元概念;衰减系数与 CT值定义;CT 与胶片分辨率差异及原因;窗口技术与窗宽、窗位定义;第一代到第五代 CT 特点)
(2)CT 图像重建原理和方法(投影概念与实质;正弦图概念及公式;CT 图象重建方法分类及典型代表算法比较;直接反投影重建法原理、计算及“灰雾”成因)
(3)CT 图像显示和质量评价方法(CT 图像重建显示的代表性图像处理技术;CT 图 像
特点,与 X 射线透视影像的区别;CT 图像质量参数、三种评价参数公式及表征)
(4)CT 装置结构(CT 装置组成;CT 机房要求)
3. 放射性核素成像
(1)放射性同位素及射线检测物理基础(放射性同位素概念、性质、衰变规律、在医学中的应用;粒子探测器各部分组成、定义、分类、特性等;放射线检测前置放大器的作用)
(2)放射性同位素扫描与γ照相机(放射性核素成像概念;放射性同位素扫描原理、结构;γ照相机结构、工作原理)
(3)ECT 成像(ECT 成像原理与分类;SPECT 分类、原理、组成、特点;PET 原理, 符合湮灭测量与飞行时间差作用、探测器类型、成像过程;PET 成像优缺点及主要应用)
4. 超声波成像
(1)超声波物理性质(超声波产生及各种物理参数定义、公式;超声波传播和衰减特性;超声辐射声场特性;超声对生物媒质作用)
(2)医用超声换能器(超声辐射声场指向性、近场与远场特性;超声换能器的压电效应原理;超声换能器结构)
(3)超声诊断仪原理(超声波成像基本原理及优势;超声脉冲反射法/脉冲回波法原理;脉冲工作频率(波长)选取考虑因素,与脉冲重复频率间的区别;超声相控阵扫描原理;超声成像基本类型;超声成像回波信号 e(t)公式及 TGC 原理;A 超、B 超、M 超在显示方面的区别)
(4)超声 Doppler 诊断技术(Doppler 效应原理及公式;超声 Doppler 血流速度测量主要方法;连续波 Doppler 速度测量基本原理;脉冲波 Doppler 速度测量基本原理及特点;超声 Doppler 测量取得血流方向信息;彩色血流映射主要技术思路;运动目标显示技术和相位检测基本知识)
5. 磁共振成像
(1)核磁共振现象(NMR)及其物理基础(原子核磁矩、核磁子、自旋量子数定义; 核磁矩与自旋角动量关系;拉莫尔进动概念与进动频率公式;力学动量矩原理;核磁矩的能级分布与核磁共振现象原理)
(2)核磁共振(NMR)信号产生与检测(宏观磁化原理;引入射频 RF 场原因;自由感应衰减信号 FID 概念;驰豫时间检测方法)
(3)NMR 成像方法(磁共振成像的基本原理;MRI 图象重建方法)
(4)MRI 装置(磁体系统;NMR 波谱仪;图像重建和显示系统)
(5)MRI 应用(临床诊断应用范围;MRI 与其它成像方法比较)
参考材料:
[1] 高上凯著, 医学成像技术, 清华大学出版社, 2001 年 2 月
(二)B 模块:医用传感基础
1. 医用传感器基本概念
(1)医用传感器的定义
(2)医用传感器的分类与组成
(3)人体信息检测的特殊性
(4)医用传感器的发展方向
2. 医用传感器的基本特性
(1)传感器信息模型的建立
(2)传感器的静态特性
(3)传感器的动态特性
3. 常用医用传感器工作原理
(1)电阻应变式传感器
(2)电容式传感器(电容式压力传感器、直流极化型电容传感器、测量电路及分布电容消除方法)
(3)变磁阻式传感器(电杆传感器差动变压器式传感器、变磁阻式传感器的应用)
(4)电动式传感器(附有力学系统的电动式传感器、电磁血流量传感器)
(5)压电式传感器和超声换能器(换能器的结构与超声场、压电式传感器、医用压电超声换能器、医学超声仪器)
(6)热敏式传感器(金属热电偶传感器、热敏电阻温度传感器、PN 结二极管和集成电路温度传感器、热释电传感器)
(7)光敏式传感器(光电倍增管、光电导元件、光生伏特元件、光敏管、各种光敏传感器的性能比较)
(8)电化学与生物传感器测量基础(参比电极、离子选择性电极及其应用、气敏电极和气体扩散电极)
4. 检测生物电及电刺激生物体用电极
(1)极化现象及对生物电检测的影响、不极化电极、电极的阻抗
(2)电极的运动伪差及市电干扰
(3)生物电检测类宏电极的类型
(4)微电极
5. 生物传感器及在医学中的应用
(1)生物传感器原理及典型应用
(2)酶电极原理及典型应用
(3)微生物传感器原理及典型应用
(4)免疫传感器原理及典型应用
(5)细胞器及组织传感器典型应用
(6)多功能及微型生物片传感器典型应用
参考材料:
[1] 《医用传感器与人体信息检测》,作者:王明时,天津科学技术出版社
(三)C 模块:生物医学信号处理基础
1. 生物医学信号概论
(1)生物医学信号处理目的
(2)典型的生物医学信号及其特点
(3)生物医学信号的数学表达(信号概率描述、数字特征以及信号平稳性与遍历性)
(4)生物医学信号通过线性系统
2. 数字信号处理的基本概念
(1)离散时间信号(典型离散信号、离散信号的运算)
(2)离散时间系统(离散时间系统的基本概念、输入输出关系
(3)Z 变换(Z 变换定义、Z 变换收敛域、Z 变换的性质
(4)离散时间系统的转移函数、频率响应、零极点分析
3. 生物医学信号的数字滤波方法
(1)奈奎斯特采样定律(掌握理想采样、频谱混叠、频谱泄露、栅栏效应等概念以及数字频率、归一化频率、频谱分辨率的计算)
(2)线性卷积与循环卷积(图表法、公式法计算卷积)
(3)IIR 数字滤波器(掌握基本概念以及给定特性的滤波器设计)
(4)FIR 数字滤波器(掌握基本概念以及给定特性的滤波器设计)
(5)匹配滤波器(基本原理和构成、神经传导速度测量用信号模型、非白噪声背景下
的匹配滤波器、信号波形未知时的匹配滤波器构造方法)
4. 生物医学信号的现代滤波方法
(1)信号功率谱(定义、非参数估计以及基于 DFT 的功率谱计算)
(2)维纳滤波(原理及公式推倒、滤波器优化、时间离散的维纳滤波器设计)
(3)参数模型(信号的成形滤波器、AR 模型阶次估计、ARMA 模型参数估计)
(4)自适应滤波及其应用(自适应的概念和原理、LMS 自适应滤波器、自适应消噪声、
自适应谱线增强和窄带信号分离、自适应系统辨识)
参考材料:
[1] 《数字信号处理导论》,作者:胡广书,清华大学出版社 (2006-07)
[2] 《生物医学信号处理》,作者:杨福生 高上凯编著,高等教育出版社(1998-05) |