网站通行证  
天津考研网 资讯中心-网尽考研信息 考研专卖店-考研资料书籍一站购齐 考研辅导班 BBS社区-便易的交流平台 专业课教材 院校导航-权威院校招生信息 下载中心-海量考研复习资料 客服中心-解决所有问题 考研热线4000220908
 您现在的位置: 天津考研网 >> 资讯中心 >> 复习指导 >> 数学 >> 正文 相信自己,加油!
    [推荐]2005年全国硕士研究生入学考试数学考试大纲-数学2-4
2005年全国硕士研究生入学考试数学考试大纲-数学2-4
责任编辑:admin  作者:佚名  来源:转自网络   更新时间:2004-8-15 22:32:51
数学二考试大纲



数 学 二  

  [考试科目]

  高等数学、线性代数

高等数学

  一、函数、极限、连续

  考试内容

  函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 简单应用问题的函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限 :


 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质

  考试要求

1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。

2.了解函数的有界性、单调性、周期性和奇偶性.

  3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.

  4. 掌握基本初等函数的性质及其图形,了解初等函数的基本概念。

  5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.

  6. 掌握极限的性质及四则运算法则

  7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.

  8. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限.

  9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

  10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

  

  二、一元函数微分学

  考试内容。

  导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 基本初等函数的导数 导数和微分的四则运算 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数的极值 函数单调性的判别 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值 弧微分 曲率的概念 曲率半径

  考试要求

  1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.

  2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.

  3.了解高阶导数的概念,会求简单函数的n阶导数.

  4. 会求分段函数的一阶、二阶导数.

  5.会求隐函数和由参数方程所确定的函数以及反函数的导数.

  6.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解柯西中值定理.

  7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.

  8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.

  9.掌握用洛必达法则求未定式极限的方法.

  10.了解曲率和曲率半径的概念,会计算曲率和曲率半径.

  三、一元函数积分学

  考试内容

  原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义积分 定积分的应用

  考试要求

  1.理解原函数概念,理解不定积分和定积分的概念.

  2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.

  3.会求有理函数、三角函数有理式及简单无理函数的积分.

  4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.

  5.了解广义积分的概念,会计算广义积分.

  6.了解定积分的近似计算法.

  7.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力)及函数的平均值.

  四、多元函数微积分学

  考试内容

  多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数、隐函数求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算

  考试要求

  1.了解多元函数的概念,了解二元函数的几何意义。

  2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。

  3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数。

  4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,会求解一些简单的应用题。

  5.了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法。  

  五、常微分方程

  考试内容

  常微分方程的基本概念  变量可分离的微分方程 齐次微分方程 一阶线性微分方程  可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程  微分方程简单应用

  考试要求

  1.了解微分方程及其解、阶、通解、初始条件和特解等概念.

  2.掌握变量可分离的方程及一阶线性微分方程的解法,会解齐次微分方程。

  3.会用降阶法解下列方程:y(n)=f(x),y''= f(x,y')y=f''(y,y').

  4.理解二阶线性微分方程解的性质及解的结构定理.

  5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。

  6.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程.

  7.会用微分方程解决一些简单的应用问题.

数学三考试大纲

考试科目

微积分、线性代数、概率论与数理统计

微积分

一、函数、极限、连续

考试内容

函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、和分段函数、隐函数、基本初等函数的性质及其图形

初等函数  简单应用问题函数关系的建立

数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则(单调有界准则和夹逼准则)

两个重要极限: ,
函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质

考试要求

1。理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系。

2。了解函数的有界性、单调性、周期性和奇偶性。

3。理解复合函数、和分段函数的概念。了解反函数及隐函数的概念。

4。掌握基本初等函数的性质及其图形,了解初等函数的概念。

5。了解数列极限和函数极限(包括左极限与右极限)的概念。

6。理解无穷小的概念和基本性质。掌握无穷小的比较方法。了解无穷大的概念及其与无穷小的关系。

7。了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,会应用两个重要极限。

8。理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

9。了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用。



二、一元函数微分学

考试内容

导数的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系  平面曲线的切线与法线 导数的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的导数 高阶导数 微分的概念和运算法则 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数的极值 函数单调性的判别 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值

考试要求

1。理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念)。会求平面曲线的切线方程和法线方程。

2。掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,掌握反函数与隐函数求导法以及对数求导法。

3。了解高阶导数的概念,会求简单函数的高阶导数。

4。了解微分的概念,导数与微分之间的关系,以及一阶微分形式的不变性,会求函数的微分。

5。理解罗尔(Rolle)定理、拉格朗日( Lagrange)中值定理、了解柯西(Cauchy)中值定理,掌握这三个定理的简单应用。

6。会用洛必达法则求极限。

7。掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用。

8。会用导数判断函数图形的凹凸性,会求函数图形的拐点和渐近线。

9。会描述简单函数的图形。



三、一元函数的积分学

考试内容

原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质

定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton- Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 广义积分 定积分的应用

考试要求

1。理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握计算不定积分的换元积分法和分部积分法。

2。了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式,以及定积分的换元积分法和分部积分法。

3。会利用定积分计算平面图形的面积和旋转体的体积及函数的平均值,会利用定积分求解简单的经济应用问题。

4。了解广义积分的概念,会计算广义积分。



四、多元函数微积分学

考试内容

多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单的广义二重积分

考试要求

1。了解多元函数的概念,了解二元函数的几何意义。

2。了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。

3。了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数。

4。了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值。会求简单多元函数的最大值和最小值,并会解决某些简单的应用题。

5。了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法。了解无界区域上较简单的广义二重积分及其计算。



五、无穷级数

考试内容

常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数的收敛性 正项级数收敛性的判别法 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 

幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式

考试要求

1。了解级数的收敛与发散、收敛级数的和的概念。

2。掌握级数的基本性质和级数收敛的必要条件。掌握几何级数及p级数的收敛与发散的条件。掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。

3。了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与收敛的关系。掌握交错级数的莱布尼茨判别法。

4。会求幂级数的收敛半径、收敛区间及收敛域。

5。了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数,并会由此求出某些数项级数的和。

6。掌握 , , , 与 的麦克劳林(Maclaurin)展开式,会用它们将简单函数间接展成幂级数。



六、常微分方程与差分方程

考试内容

常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程与差分方程的简单应用

考试要求

1。了解微分方程及其阶、解、通解、初始条件和特解等概念。

2。掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法。

3。会解二阶常系数齐次线性微分方程。

4。了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程。

5。了解差分与差分方程及其通解与特解等概念。

6。掌握一阶常系数线性差分方程的求解方法。

7。会应用微分方程和差分方程求解简单的经济应用问题。

数学四考试大纲

数学四 
  考试科目
  微积分、线性代数、概率论
  微 积 分
  一、 函数、极限、连续
  考试内容
  函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、隐函数 分段函数 基本初等函数的性质及其图形
  初等函数 简单应用问题的函数关系的建立
  数列极限与函数极限的定义及其性质 函数的左极限与右极限无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:

  函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
  考试要求
  1、 理解函数的概念,掌握函数的表示法,会建立简单应用问题中的函数关系。
  2、 了解函数的有界性、单调性、周期性和奇偶性。
  3、 理解复合函数及分段函数的概念,了解隐函数及反函数的概念。
  4、 掌握基本初等函数的性质及其图形,理解初等函数的概念
  5、 了解数列极限和函数极限(包括坐极限和右极限)的概念。
  6、 理解无穷小的概念和基本性质,掌握无穷小的比较方法,了解无穷大的概念及其无穷小的关系。
  7、 了解极限的性质与极限存在的两个准则,掌握极限四则运算法则,会应用两个重要极限。
  8、 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
  9、 了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用。
  二、 一元函数微分学
  考试内容
  导数的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 导数的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的导数 高阶导数 微分的概念和运算法则 一阶微分形式的不变性
  罗尔定理和拉格郎日中值定理及其应用 洛必达(L'Hospital)法则 函数单调性 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值
  考试要求
  1、 理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念)。
  2、 掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,掌握反函数与隐函数求导法,了解对数求导法。
  3、 了解高阶导数的概念,会求简单函数的高阶导数
  4、 了解微分的概念,导数与微分之间的关系,以及一阶微分的形式的不变性,会求函数的微分。
  5、 理解罗尔(Rolle)定理和拉格郎日中值定理、掌握这两个定理的简单应用。
  6、 会用洛必达法则求极限。
  7、 掌握函数单调性的判别方法及其应用,掌握函数极值、最大值和最小值的求法,会求解较简单的应用题。
  8、 会用导数判断函数图形的凹凸性,会求函数图形的拐点和斜渐近线。
  9、 掌握函数作图的基本步骤和方法,会作简单函数的图形。
  三、 一元函数的积分学
  考试内容
  原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 广义积分 定积分的应用。
  考试要求
  1、 理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法。
  2、 了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式,以及定积分的换元积分法和分部积分法。
  3、 会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解简单的经济应用问题。
  4、 了解广义积分的概念,会计算广义积分
  四、 多元函数微积分学
  考试内容
  多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单二重积分的计算。
  考试要求
  1、 了解多元函数的概念,了解二元函数的几何意义。
  2、 了解二元函数的极限与连续的直观意义,了解有界闭区域上二元连续函数的性质。   
3、 了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数 会求全微分,会用隐函数的求导法则。
  4、 了解多元函数的极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简单多元函数的最大值和最小值,会求解一些简单的应用题。
  5、 了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法,会计算无界区域上的较简单的二重积分。
  五、 常微分方程
  考试内容
  常微分方程的基本概念 变量可分离的微分方程 齐次微分方程一阶线性微分方程
  考试要求
  1、 了解微分方程及其解、阶、通解、初始条件和特解等概念。
  2、 掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法
分享到:
复制本文地址给好友 -
  • 上一篇文章:

  • 下一篇文章:
  • 发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口】 
    文章搜索
    天津考研网版权、投稿与免责申明:
    1)凡本网署名文字、图片和音视频稿件,版权均属天津考研网所有。任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表。已经本网协议授权的媒体、网站,在下载使用时必须注明稿件来源:天津考研网,违者本网将依法追究责任。
    2)本网注明"来源:转自网络"的文章均为转载稿,本网转载出于传递更多信息之目的。此类稿件并不代表本网观点,本网不承担此类稿件侵权行为的直接责任及连带责任。
    3. 如因作品内容、版权等需要同本网联系的,请在作品在本网发表之日起30日内联系,否则视为放弃相关权利。
      热门考研服务
      最新考研信息
      相关文章
    专家解析2011年考研数学大纲及备考指导
    考研名师王式安解析09数学考研大纲
    新东方名师汪诚义做客解析09年考研数学大纲
    新东方名师费允杰做客解析09年考研数学大纲
    海天数学名师张卓奎解读2009考研数学新大纲
    2009年考研数三数四合并最新解读及应对策略
    2009年硕士研究生考试数学大纲内容变化情况
    万学海文名师铁军解析2009年考研数学大纲
    09考研政治大纲深度解析-关于构建社会主义和谐社会
    09年考研经济和管理类考研数学大纲变化综述
      热卖考研资料
    资讯栏目导航
    新闻政策 考研新闻 考研政策 热点点评
    复习指导 英语 数学 政治 专业课 分数线 大纲 复试
    经验心得 经验交流 考研故事
    院校导航 天津大学 天津医科大学 天津师范大学
    南开大学 天津财经大学 河北工业大学
    天津工业大学 中国民航大学 天津外国语大学
    天津理工大学 天津科技大学 天津商业大学
    天津中医药大学 天津城市建设学院 其他
    统考科目 心理学考研 教育学考研 历史学考研
    计算机考研 医学考研网 法律硕士 农学
    热门专业 会计学 行政管理 土木建筑 化学 机械 法学
    自动化 新闻传播 人力资源 生物 电气 中文
    管理学 电子通信 国际关系 外语 经济 社保
    | 关于我们 | 网站导航 | 招聘信息 | 广告业务 | 隐私条款 | 客服中心 | 联系我们设为首页 顶部 全国统一热线:022-58054788,58054799,27056088
    版权所有 Copyright©2003-2024 天津格瑞斯教育科技有限公司 All Rights Reserved 旗下网站:[天津考研网]52kaoyan.com上学网]chinakao.cn
    公司地址:天津市和平区卫津路佳怡国际D座底商(天津大学东门斜对过) -办公室地图-行车路线 工商网银在线支付平台,安全快捷!支付宝特约商家,信任标志!考研一站式服务,考研无忧!
    公司总机:022-85681642 客服热线:022-58054788,58054799(7X24小时热线支持)
    法律顾问:王自强律师 信息产业部备案:津ICP备07001356号-3