|
考研数学概率论与数理统计快速入门指导 |
考研数学概率论与数理统计快速入门指导 |
责任编辑:cnedu2009 作者:cnedu200… 来源:转自网络 更新时间:2009-4-16 17:52:23 |
|
考研数学的复习一直以来是考生心中的一个沉重的负担,尤其是数学基础差或者没有基础的考生,复习起来难度就更大,心理也有很大的压力。概率作为数学一和数学三必考的数学科目,对于很多门外汉来说,无疑是一只拦路虎,怎样快速入门,掌握其中的精华?让我们来听听考研教育网数学专家的讲解,让他带着大家从浅入深,一步步走向概率的深处! 从随机现象说起在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成截然不同的两大类:一类是确定性的现象。这类现象是在一定条件下,必定会导致某种确定的结果。举例来说,在标准大气压下,水加热到100摄氏度,就必然会沸腾。事物间的这种联系是属于必然性的。通常的自然科学各学科就是专门研究和认识这种必然性的,寻求这类必然现象的因果关系,把握它们之间的数量规律。 另一类是不确定性的现象。这类现象是在一定条件下,它的结果是不确定的。举例来说,同一个工人在同一台机床上加工同一种零件若干个,它们的尺寸总会有一点差异。又如,在同样条件下,进行小麦品种的人工催芽试验,各棵种子的发芽情况也不尽相同,有强弱和早晚的分别等等。为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素又是人们无法事先一一能够掌握的。正因为这样,我们在这一类现象中,就无法用必然性的因果关系,对个别现象的结果事先做出确定的答案。事物间的这种关系是属于偶然性的,这种现象叫做偶然现象,或者叫做随机现象。 在自然界,在生产、生活中,随机现象十分普遍,也就是说随机现象是大量存在的。比如:每期体育彩票的中奖号码、同一条生产线上生产的灯泡的寿命等,都是随机现象。因此,我经常对考研教育网的学员说:随机现象就是:在同样条件下,多次进行同一试验或调查同一现象,所的结果不完全一样,而且无法准确地预测下一次所得结果的现象。随机现象这种结果的不确定性,是由于一些次要的、偶然的因素影响所造成的。 随机现象从表面上看,似乎是杂乱无章的、没有什么规律的现象。但实践证明,如果同类的随机现象大量重复出现,它的总体就呈现出一定的规律性。大量同类随机现象所呈现的这种规律性,随着我们观察的次数的增多而愈加明显。比如掷硬币,每一次投掷很难判断是那一面朝上,但是如果多次重复的掷这枚硬币,就会越来越清楚的发现它们朝上的次数大体相同。 我们把这种由大量同类随机现象所呈现出来的集体规律性,叫做统计规律性。概率论和数理统计就是研究大量同类随机现象的统计规律性的数学学科。 一、概率论 概率论作为一门数学分支,它所研究的内容一般包括随机事件的概率、统计独立性和更深层次上的规律性。 概率是随机事件发生的可能性的数量指标。在独立随机事件中,如果某一事件在全部事件中出现的频率,在更大的范围内比较明显的稳定在某一固定常数附近。就可以认为这个事件发生的概率为这个常数。对于任何事件的概率值一定介于0和1之间。 有一类随机事件,它具有两个特点:第一,只有有限个可能的结果;第二,各个结果发生的可能性相同。具有这两个特点的随机现象叫做“古典概型”。 在客观世界中,存在大量的随机现象,随机现象产生的结果构成了随机事件。如果用变量来描述随机现象的各个结果,就叫做随机变量。 随机变量有有限和无限的区分,一般又根据变量的取值情况分成离散型随机变量和非离散型随机变量。一切可能的取值能够按一定次序一一列举,这样的随机变量叫做离散型随机变量;如果可能的取值充满了一个区间,无法按次序一一列举,这种随机变量就叫做非离散型随机变量。 在离散型随机变量的概率分布中,比较简单而应用广泛的是二项式分布。如果随机变量是连续的,都有一个分布曲线,实践和理论都证明:有一种特殊而常用的分布,它的分布曲线是有规律的,这就是正态分布。正态分布曲线取决于这个随机变量的一些表征数,其中最重要的是平均值和差异度。平均值也叫数学期望,差异度也就是标准方差。 二、数理统计 数理统计包括抽样、适线问题、假设检验、方差分析、相关分析等内容。抽样检验是要通过对子样的调查,来推断总体的情况。究竟抽样多少,这是十分重要的问题,因此,在抽样检查中就产生了“小样理论”,这是在子样很小的情况下,进行分析判断的理论。 适线问题也叫曲线拟和。有些问题需要根据积累的经验数据来求出理论分布曲线,从而使整个问题得到了解。我上课的时候经常问考研教育网的学员,根据什么原则求理论曲线?如何比较同一问题中求出的几种不同曲线?选配好曲线,有如何判断它们的误差?……这就属于数理统计中的适线问题的讨论范围。 假设检验是只在用数理统计方法检验产品的时候,先作出假设,在根据抽样的结果在一定可靠程度上对原假设做出判断。 方差分析也叫做离差分析,就是用方差的概念去分析由少数试验就可以做出的判断。 由于随机现象在人类的实际活动中大量存在,概率统计随着现代工农业、近代科技的发展而不断发展,因而形成了许多重要分支。如:随机过程、信息论、极限理论、试验设计、多元分析等。 更多关于概率论和数理统计的复习技巧和方法,我会在以后的讲座中不断推出,大家可以关注考研教育网的考研数学栏目。
|
|
上一篇文章: 考研数学线性代数高分复习四字方略 下一篇文章: 考研数学线性代数常考知识点及复习要点 |
|
【发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口】 |
文章搜索 |
|
|
天津考研网版权、投稿与免责申明: |
1)凡本网署名文字、图片和音视频稿件,版权均属天津考研网所有。任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表。已经本网协议授权的媒体、网站,在下载使用时必须注明“稿件来源:天津考研网”,违者本网将依法追究责任。 2)本网注明"来源:转自网络"的文章均为转载稿,本网转载出于传递更多信息之目的。此类稿件并不代表本网观点,本网不承担此类稿件侵权行为的直接责任及连带责任。 3. 如因作品内容、版权等需要同本网联系的,请在作品在本网发表之日起30日内联系,否则视为放弃相关权利。 |
|
|
热卖考研资料 |
|
|