计算机知识点多且难, 一直是学生们头痛的科目之一,我们的考研辅导老师化繁为简,按照2013年考研计算机专业大纲解析后,特归纳出十大核心考点以供学生们复习参考。
核心考点一:OSI参考模型的分层结构
OSI七层参考模型图如下:
最底层:物理层(Physical Layer)功能:数据物理传输
第二层:数据链路层(Data Link Layer)功能:错误校验、纠正、组帧
第三层:网络层 (Network Layer)功能:路由选择、计费信息管理
第四层:传输层 (Transport Layer)功能:网络决策实现分组和重新组装
第五层:会话层 (Session Layer)功能:通信同步错误恢复和事务操作
第六层:表示层 (Presentation Layer)功能:转换数据格式、数据加密、解密
第七层:应用层 (Application Layer)功能:提供电子邮件、文件传输等用户服务
核心考点二:物理层的数据传输率计算
数据传输速率:每秒传输二进制信息的位数,单位为位/秒,记作bps或b/s。计算公式: S=1/T*log2N(bps)
式中 T为一个数字脉冲信号的宽度(全宽码)或重复周期(归零码)单位为秒;N为一个码元所取的离散值个数。通常 N=2K,K为二进制信息的位数,K=log2N。N=2时,S=1/T,表示数据传输速率等于码元脉冲的重复频率。
信号传输速率:单位时间内通过信道传输的码元数,单位为波特,记作Baud。计算公式: B=1/T (Baud)
式中 T为信号码元的宽度,单位为秒。信号传输速率,也称码元速率、调制速率或波特率。
核心考点三:数据链路层中的流量控制与可靠传输机制
流量控制涉及链路上字符或帧的发送速率的控制, 以使接收方在接收前的足够的缓冲存储空间来接收每一个字符或帧。两种常用的流量控制方案:XON/XOFF方案和窗口机制:
XON/XOFF方案
增加缓冲存储空间在某种程度上可以缓解收、发双方在传输速率上的差异,但这是一种被动、消极的方法。因为,一方面系统不允许开设过大的缓冲空间,另一方面对于速率显著失配并且又传送大量数据的场合,仍会出现缓冲空间不够的现象。XON/XOFF方案方案则是一种相比之下更主动、更积极的流量控制方法。
窗口机制
为了提高信道的有效利用率,如前所述采用了不等待确认帧返回就连续发送若干帧的方案。由于允许连续发送多个未被确认的帧 ,帧号就需采用多位二进制才能加以区分。因为凡被发出去蛤尚未被确认的帧都可能出错或丢失而要求重发,因而这些帧都要保留下来。这就要求发送方有较大的发送缓冲区保留可能要求重发的未被确认的帧。
核心考点四:数据链路层设备
网桥:网桥工作在数据链路层,将两个局域网连起来,根据MAC地址来转发帧,可以看做一个“低层的路由器”(路由器工作在网络层,根据网络地址如IP地址进行转发)。网桥是一种数据帧存储转发设备,它通过缓存、过滤、学习、转发和扩散等功能来完成操作。
核心考点五:数据链路层介质访问控制协议
介质访问控制的帧结构:CSMA/CD的MAC帧由8个字段组成:前导码;帧起始定界符SFD;帧的源和目的地址DA、SA;表示信息字段长度的字段;逻辑连接控制帧LLC;填充的字段PAD;帧检验序列字段FCS。
介质访问控制方法:IEEE802.3标准提供了介质访问控制子层的功能说明,有两个主要的功能:数据封装(发送和接收),完成成帧(帧定界、帧同步)、编址(源和目的地址处理)、差错检测(物理介质传输差错的检测);介质访问管理,完成介质分配避免冲突和解决争用处理冲突。
核心考点六:传输层的流量控制与拥塞控制
为了提高报文段的传输速率,TCP采用大小可变的滑动窗口进行流量控制。窗口大小的单位是字节。发送窗口在连接建立时由双方商定,但在通信过程中,接收端可根据自己的接收缓存的大小,随时动态地调整发送端的发送窗口的上限值。这就是接收端窗口,这个值被放在接收端发送的TCP报文段首部的窗口字段中。同时,发送端根据其对当前网络拥塞程度的估计而确定的窗口值,叫做拥塞窗口。
为了保证网络平稳高效的运行,防止网络流量的剧烈起伏震荡。1999年公布的因特网建议标准[RFC2581]提出了慢启动(slow-start)和拥塞避免算法(congestion avoidance)。
慢启动算法的原理:在主机开始发送数据时,采用试探的方式,由小到大逐渐增大发送端的拥塞窗口数值。通常是在一开始拥塞窗口应设置为不超过2×MSS(最大报文段)个字节,在每收到一个对新的报文段的确认后,拥塞窗口至多增加1个MSS的数值。使分组注入到网络的速率比较合理。
拥塞避免算法:是使发送端的拥塞窗口每经过一个RTT就增加一个MSS的大小(而不管在时间RTT内收到了几个ACK)。
核心考点七:应用层FTP协议的理解
FTP协议是文件传输协议(File Transfer Protocol)的简称,它采用两个TCP连接来传输一个文件,它们是控制连接和数据连接。
控制连接以通常的客户服务器方式建立。服务器以被动方式打开用于FTP的端口(21),等待客户的连接。客户则以主动方式打开TCP端口21,来建立连接。控制连接始终等待客户与服务器之间的通信。该连接将命令从客户传给服务器,并传回服务器的应答。由于命令通常是由用户键入的,所以IP对控制连接的服务主要责任就是“最大限度地减小迟延”。
每当一个文件在客户与服务器之间传输时,就创建一个数据连接。由于该连接用于数据传输目的,所以IP对数据连接的服务特点就是“最大限度提高吞吐量”。
核心考点八:网络层的子网划分和路由协议
子网划分是通过借用IP地址的若干位主机位来充当子网地址从而将原网络划分为若干子网而实现的。划分子网时,随着子网地址借用主机位数的增多,子网的数目随之增加,而每个子网中的可用主机数逐渐减少。
子网划分步骤:
1. 确定要划分的子网数目以及每个子网的主机数目。
2. 求出子网数目对应二进制数的位数N及主机数目对应二进制数的位数M。
3. 对该IP地址的原子网掩码,将其主机地址部分的前N位置 1或后M位置0 即得出该IP地址划分子网后的子网掩码。
子网划分(subnetting)的优点:减少网络流量、提高网络性能、简化管理、易于扩大地理范围。
路由协议:
RIP路由协议
RIP采用距离向量算法,即路由器根据距离选择路由,所以也称为距离向量协议。路由器收集所有可到达目的地的不同路径,并且保存有关到达每个目的地的最少站点数的路径信息,除到达目的地的最佳路径外,任何其它信息均予以丢弃。同时路由器也把所收集的路由信息用RIP协议通知相邻的其它路由器。这样,正确的路由信息逐渐扩散到了全网。
OSPF路由协议
0SPF是一种基于链路状态的路由协议,需要每个路由器向其同一管理域的所有其它路由器发送链路状态广播信息。在OSPF的链路状态广播中包括所有接口信息、所有的量度和其它一些变量。利用0SPF的路由器首先必须收集有关的链路状态信息,并根据一定的算法计算出到每个节点的最短路径。而基于距离向量的路由协议仅向其邻接路由器发送有关路由更新信息。
BGP和BGP-4路由协议
BGP是为TCP/IP互联网设计的外部网关协议,用于多个自治域之间。它既不是基于纯粹的链路状态算法,也不是基于纯粹的距离向量算法。它的主要功能是与其它自治域的BGP交换网络可达信息。各个自治域可以运行不同的内部网关协议。BGP更新信息包括网络号/自治域路径的成对信息。自治域路径包括到达某个特定网络须经过的自治域串,这些更新信息通过TCP传送出去,以保证传输的可靠性。 |